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We compare two different approaches for computing the propagator for a particle diffusing in a
fluid filled porous medium, where the pore space has a periodic structure and some absorption of
the particle can occur at the pore-matrix interface. One of these approaches is based on computer
simulations of a random walker in this structure, while the other is based on an explicit calculation
of the diffusion eigenstates using a Fourier series expansion of the diffusion equation. Both methods
are applied to the same nondilute model systems in order to calculate the wave-vector and time-
dependent nuclear magnetization measured in pulsed-field-gradient—spin-echo experiments. When
the physical parameters are confined to the range of values found in most systems of interest, good
quantitative agreement is found between the two methods. However, as the interfacial relaxation
strength, the time, or the wave vector becomes large, calculations based on eigenstate expansion
are more stable and less subject to the sampling problems inherent in random walk simulations. In
the absence of surface relaxation, our calculations are also used to test the results predicted by a
recently proposed ansatz for the behavior of the diffusion propagator. Finally, a problem is identified
and discussed regarding the relation between random walk and continuum diffusion treatments of
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I. INTRODUCTION

Advances in measurement techniques, such as nuclear
spin echo in the presence of a pulsed magnetic field gra-
dient (PFGSE), have recently made possible detailed ex-
perimental studies of particle diffusion in some restricted
geometries [1-4]. In parallel, a number of approaches
have been developed for performing theoretical and nu-
merical studies of diffusion in such geometries [5-12].
Two of these are notable in not being restricted to sys-
tems that are either dilute (i.e., a low concentration
of obstacles to diffusion in an otherwise homogeneous
medium) or have a very simple microstructure (e.g., iso-
lated spherical pores). These are the method of random
walker simulations [5,6,10,11] and the method of diffu-
sion eigenstates in a periodic microstructure [12]. These
approaches are totally different in all of their aspects and
therefore it is of interest to compare their performance
and find out under what conditions one of them might
be preferable. Here we report on such a comparison. We
also test the validity of a certain ansatz, proposed in Ref.
[8], wherein a time-dependent diffusion coefficient, which
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is always useful for describing long wavelength behavior,
is also used to characterize the short wavelength behavior.

Having specified the geometry of the porous medium,
the PFGSE amplitude can be viewed as a function of the
following parameters: the time ¢, the wave vector k, the
diffusion coefficient in the pore space Dy, and the inter-
facial absorption coefficient or relaxation strength p. In
general, the calculations become easier as the magnitude
of either t, k, or p decreases. For example, as k — 0 the
amplitude is determined by the effective time-dependent
diffusion coefficient D(t) and the two methods are found
to yield essentially identical results over the entire range
of t and p values studied. On the other hand, at larger
k values, as either t or p becomes large, we find notice-
able differences between the results obtained by the two
methods. Generally these are cases where the calculated
amplitude is quite small and the simulation technique
is limited by statistical considerations. However, we find
that within the experimentally accessible range of param-
eters, the two methods are in quite good agreement. In
order to achieve this good agreement, we found that the
precise relationship between the absorption parameters
used in the two approaches had to be adjusted empir-
ically. This is a result of some important subtleties in
this problem, associated with the fact that the absorp-
tion is a surface rather than a volume process. While
these issues were discussed in a one-dimensional context
in Refs. [6,7], related problems that arise in higher di-
mensions were discovered in the course of this work and
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are discussed here. Because these subtleties were not
appreciated earlier, they were not dealt with in setting
up the random walker algorithm which was used in the
present calculations. That is why we had to resort to an
empirical adjustment.

The remainder of this article is organized as follows.
In Sec. II we present a brief summary of the basic the-
ory of diffusion in the presence of interface absorption
and of the two computational methods which were devel-
oped from the above mentioned approaches. In Sec. II1
we consider the application of these methods to a model
porous medium comprised of spherical grains centered on
the sites of a periodic simple cubic lattice. Here the grain
radii may be chosen large enough that the grains overlap
and the resulting porosity (i.e., the volume fraction occu-
pied by the pore space) takes low values which are typical
of many systems of experimental interest. In Sec. IV we
discuss the relation between the continuum description
of interface absorption and the implementation of this
process in random walker simulations.

II. SUMMARY OF THE THEORY
AND COMPUTATIONAL METHODS

All the information about self-diffusion in a re-
stricted geometry is contained in the diffusion propagator
G(r,r’,t), which is the solution of the following mathe-
matical problem:

oG

= DoV2G  inside the pore space, (2.1)
Gl,_, =8(r—1'), 2.2
t=0
oG .
Doa— +pG =0  at the pore-matrix interface. (2.3)
n

Here Dy is the diffusion coefficient of the pore fluid and
p is a coeflicient which determines the rate of particle
absorption at the obstacle surfaces.

For example, the PFGSE amplitude M(k,t) is given
by a double spatial Fourier transform of G (see, e.g., Ref.

[8])

M(k,t) = Vi /V av /V dV'G(r,r', t)eH ) (2.4)

4

Here V}, is the total volume of the pore space and the
wave vector k is simply related to the value VH of the
(uniform) magnetic field gradient and its duration &

k =~6VH, (2.5)
where -y is the gyromagnetic ratio of the nuclear magnetic
moment of the diffusing particles.

For the case of diffusion in a homogeneous fluid, G is
given by

3/2 n2

1 (r—r')

G 4 t) = —_—
(r,x,2) (47rD0t) exp[ 4Dt ]

and M (k,t) then has the simple form

(2.6)

M(k,t) = e~ Dok’t, (2.7)
For diffusion in a restricted geometry, both G and M will
depend on the detailed microstructure. This is reflected
in the methods that will now be outlined for calculating
these quantities.

The value of M (k,t) at k=0 represents the total mag-
netization of the system and we will denote it by M(t).
For p = 0 it has the constant value 1, but for p > 0 it
decays in time from M (0) = 1 to M(o0) = 0. If we nor-
malize M (k,t) by dividing it by M (t), then for small k
the normalized value has the simple form [11]

M(k’t) _ —D(t)k*t

M@ e . (2.8)
This relation defines the bulk effective time-dependent
diffusion coefficient D(t), which then characterizes the
behavior of the normalized PFGSE amplitude for small
k. The coefficient D(t) decreases with increasing ¢ and
therefore tends to different finite limiting constants at
very short and very long times

Dy for t— 0

D) — { D, for t — oo, (2.9)

where D, is the bulk effective stationary diffusion coef-
ficient of the porous medium. The time-dependent dif-
fusion coefficient D(t) is easily calculated from values of
M (k,t) at small k vectors. It can also be calculated, even
without knowing M (k,t), from a knowledge of the mean
square displacement of a diffusing particle ([dr(¢)]2)

1 1

(O = 370577 [, v /V V' (r — ¥')2G(r, ', t)

(2.10)

While D(t) is always a useful quantity for describing
the long wavelength diffusion behavior, i.e., M(k,t) at
small k, an ansatz has also been proposed wherein D(t)
is used to characterize M(k,t) at arbitrary values of k
[8]. For a porous medium with a periodic microstructure,
that ansatz can be written as [see Eq. (9) of Ref. [8]]

Ee—(k—g)zb(t)tlgglz
~ _B
M(k7 t) ~ Ze_g2D(t)t|08l2

g

(2.11)

Here the summation is over all the vectors g of the ap-
propriate reciprocal lattice and

Og = / dV e i&T
VP

is the Fourier expansion coefficient of the characteristic
(or indicator) function of the pore space 6,(r) (equal to
1 inside that pore space and to 0 elsewhere).

(2.12)
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A. Diffusion simulations

Given a direct representation of the pore geometry, the
PFGSE amplitude can be calculated by random walk
simulations of diffusing particles [5]. Here we are con-
cerned with an ordered system and the implementation
of the random walk is quite straightforward. While these
simulations take advantage of the periodicity of the sys-
tem, it should be emphasized that the value of this tech-
nique is the relative ease with which it can be generalized
to treat disordered systems.

In the algorithm used here, random walkers move
through the pore space taking steps of fixed length e.
The step size € is taken to be equal to 0.01a, where a
is the edge length of the simple cubic unit cell. (Several
simulations were repeated with ¢ = 0.005a and showed
no appreciable changes in the final results.) Walkers
are launched from randomly chosen positions (zo, yo, 20)
within the pore space and, at each time step of size 7,
advance from their current position (z1,y1,21) to a new
position (z2,y2,22) on the surface of a sphere of radius
€:

Ty =1 + esinfcos ¢ (2.13a)
Y2 = y1 + €sinfsing , (2.13b)
zg = 21 +€cosf . (2.13¢)

We emphasize that cos 8 must be distributed uniformly in
the range (—1, 1) to ensure uniform coverage of the spher-
ical surface. [Note that this is not equivalent to choosing
0 uniformly in the interval (0,7).] At prespecified time
intervals each walker’s contribution to the PFGSE am-
plitude is included in the sum [8]

N
Mk, t) = % 3 explik - {ra(t) — ra(t = 0)}]. (2.14)

As the number of walkers IV increases, the imaginary part
of this expression becomes negligible compared to the real
part. Alternatively, we could have calculated directly
P(r | t) (the probability that a particle will diffuse a
distance r in time t) and then Fourier transformed to get
M (k,t). (Both approaches sometimes yield unphysical
results [e.g., negative M(k,t) values] if the number of
walkers is not large enough.)

The relation between the random walk parameters e,
7, and the diffusion coefficient Dy is

62

Do = —
0 6’7',

(2.15)
since the diffusion process in the bulk fluid is accurately
described by the three-dimensional Gaussian probability
distribution of (2.6).

Implementation of the boundary condition (2.3) is, in
principle, straightforward [5—7] as long as the absorption
strength p is reasonably weak (as is the case in almost
all experiments of interest). In the limit p = 0, we have
blind reflection at the pore-grain interface: the walker
returns to its attempt position and the clock advances
by one time step 7. For p # 0, when a walker encounters
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the interface its magnetic polarization is wiped out (i.e.,
the walker is “killed”) with probability v (per unit time
step 7), which is proportional to p for sufficiently small €

(2.16)

where A is a dimensionless proportionality coefficient of
order 1 (in Refs. [5-7] a similar relation is given, but
without the proportionality factor A). The exact relation
between v and p depends on details of the random walker
algorithm in subtle ways, some of which were pointed
out in Refs. [5-7], while others are discussed in Sec. IV
below. The value of v affects both D(t) and M(k,t).
Its most dramatic effect is on the total magnetization
Mk = 0,t) = M(t), which decays with time at an
asymptotically exponential rate that is proportional to
v for small v. In order to perform the comparisons of
this paper we adjusted the value of A for each sample
so as to achieve the same rate of decay for M(t) in the
two approaches. The values found in this way for A are
shown in Table L.

Given specific values for the cube edge a and for Dy,
we can easily convert the results of computer simulations
into physical units. Returning to the PFGSE amplitude
(2.14) we must now take account of the fact that the total
magnetization M(t) is decaying (i.e., that the number of
walkers included in the sum is changing with time). Ac-
cordingly, we focus on the normalized PFGSE amplitude

(8]

]_WM(_I(Et’)i) = —]\Tl(g X": exp [tk - {rn(t) —rn(0)}], (2.17)

where the sum is now understood to include only those
walkers surviving up to time t.

The simulations were also used to calculate D(t) di-
rectly, without going through a calculation of M (k,t),
by using the following implementation of (2.10):

6D(t)t = —+—= 5" [ra(t) — ra(O)]%. (2.18)
M)

B. Fourier expansion of diffusion eigenfunctions

The diffusion propagator can always be expanded in
terms of the diffusion eigenstates. When the microstruc-

TABLE 1. Values of the proportionality factor A [see
(2.16)], obtained by matching the diffusion simulation results
for the total magnetization M(t) to the corresponding results
from the eigenstate expansion approach. Note that results for
¢ = 0.700 are not discussed elswhere in this paper.

pa/Do $=0.202 $=0.4764 $=0.700
0.2 1.49 1.39
0.3 1.37
0.4 1.49 1.37
1.0 1.47 1.39 1.37
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ture is periodic, the eigenfunctions have the Bloch-
Floquet form

Pnq (r)e"d T Anat, (2.19)

where Anq is the eigenvalue, 7 is a band index, q is a wave
vector in the first Brillouin zone of reciprocal space, and

¢nq(r) is a periodic function. The periodic part of the
eigenfunction satisfies the following equations:

AngPng + Do(V + iq)%¢nq = 0 in the pore space, (2.20)

aqan

Do on

+ ppnq = 0 at the pore-matrix interface. (2.21)

It can also be expanded in a Fourier series as

Op(r)bna(r) = ) Pna(g)e®™. (2.22)

The diffusion propagator can now be expanded as

Gr,r',t) = Y e g (r)Bhg ()e' ™), (2.23)

n,q

where the eigenfunctions are orthonormal in the volume
of the pore space V,,, i.e.,

The PFGSE amplitude has a particularly concise ex-
pression in terms of the Fourier expansion coefficients

$na(8)

VvV ~
Mkt) = 2 3 e ™ [dnal@)l®| o (2:25)

where V is the total volume, ¢ = V,,/V is the porosity,
and g is the reciprocal lattice vector that is closest to
k. For small k we just have gx =0 and q = k.

In the Fourier method, the eigenstates are found by
solving a matrix eigenvalue problem, obtained from the
differential equation (2.20) by using expansions such as
(2.22). The transformation to a matrix eigenvalue prob-
lem is complicated by the fact that the boundary con-
dition (2.21) must be taken into consideration. In the
nonabsorbing case, when p = 0, this was done by refor-
mulating (2.20) so that (2.21) is automatically satisfied
[12]. Treatment of the p # 0 case is based upon the solu-
tion of the p = 0 case for the same microstructure: The
p # 0 eigenstates are expanded in the p = 0 eigenstates
and a new matrix eigenvalue problem is set up where
the eigenvectors are the expansion coefficients [13]. Both
types of matrix eigenvalue problems are solved by stan-
dard numerical methods and the results are then used in
(2.25) to calculate M(k,t). The time-dependent diffu-
sion coeflicient D(t) is calculated from M (k,t) at small
k by using (2.8).
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III. RESULTS AND COMPARISONS

The diffusion simulations always used a value for the
proportionality coefficient A [see (2.16)] that was ad-
justed separately for each sample so as to give good agree-
ment with the eigenstate expansion calculation of the to-
tal magnetization M (t). Those values of A are shown
in Table I and they are all in the range 1.37-1.49. In
Sec. IV below we present an argument, which was pro-
duced by hindsight (i.e., after completion of the simula-
tions), that may justify a value A =~ 1.5. We note, how-
ever, that while M (¢) itself is very sensitive to the value
of A, we found that the normalized PFGSE amplitude
M(k,t)/M(t) is quite insensitive to that value. There-
fore the results that we got for M(k,t)/M(t) would be
unchanged if we used A = 1.5 instead of the values from
Table I.

In Fig. 1 we examine the general trends to be expected
when the relaxation strength p is turned on in a simple
cubic array of spherical obstacles that are just touching
(¢ = 0.4764). The curves shown here for the PFGSE am-
plitude ratio M (k,t)/M(t) were computed by the eigen-
state expansion; the same trends are evident in the sim-
ulation results. In some sense, the most striking feature
of these curves is how little the values of M (k,t)/M(t)
change as p is increased. In this connection we note that
the effective pore diameter is somewhat smaller than the
cube edge a, so that even the case shown here, where
pa/Dqo = 1, is still within the fast diffusion or small p
regime. Generally, the effects of surface relaxation be-
come stronger as t increases. When ¢ is large enough that
we have well defined quasidiffraction peaks at k equal to
any reciprocal lattice vector, the values of M (k,t)/M(t)
at the minima and maxima all increase with increasing
p, while the location of these features in k space remains
unchanged.

In[M(k,t)/M(t)]

i k e pa/D, = 1.0
0

1 2 3 4 5
Wave vector k along [100]

FIG. 1. For the case of touching spheres (p = 0.4674), cal-
culations of M(k,t)/M(t) based on the eigenstate expansion
are shown for p = 0 and pa/Do = 1. Results are presented for
six values of t corresponding to 0.67, 3.33, 6.67, 13.33, 26.67,
and 40 msec. Here we take the cube edge to be equal to 10
pm and Do = 2.5 um?/msec.
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In Fig. 2 we compare the results of eigenstate ex-
pansion and diffusion simulation for M(k,t) in the case
p = 0. Here we consider the case of touching spheres
(¢ = 0.476) and a case of overlapping spheres (¢ = 0.202)
[14]. In both cases the two sets of results are in good
agreement over a range of k values which includes the
first quasidiffraction peak. We note that the diffraction
peaks are considerably lower, even though they are more
pronounced above the background, in the case of the
higher porosity sample. Physically, this reflects the fact
that D(t) decreases with decreasing ¢, at least in the case
of an array of spherical obstacles [12,13]. This behavior
can also be tied in with a consideration of the average
probability density that a diffusing particle returns to its
point of origin at the time t. When p = 0, this quantity
is given by

1 d3k
Vp/vpdVG(r,r,t)~/WM(k,t).

Intuitively, we can expect this quantity to increase with

(3.1)

In[M(k 1)}
=

( e

P

6 =0.476; p=0.0
5 Eigenvalue Expansion
{ e Diffusion Simulation
7
0

1 2 3 4 5

Wave vector k along [100]

In[M(k,1)]
N

$=0.202; p=0.0

Eigenvalue Expansion
e Diffusion Simulation

o 1 2 3 s 5
Wave vector k along [100]
FIG. 2. Eigenstate expansion and diffusion simulation re-
sults for M(k,t) are compared in the case p = 0 (a) for

touching spheres (¢ = 0.4674) and (b) for overlapping spheres
(¢ = 0.202), with ¢ = 0.67 — 40.0 msec.
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decreasing ¢ since it usually becomes more difficult for
the particle to move away from its point of origin.

It is also of interest to compare the present calculations
with the simple ansatz proposed in Ref. [8]. In Fig. 3 we
see that, for p = 0, this ansatz leads to results which are
qualitatively reasonable, although the depth and sharp-
ness of the quasidiffraction minima is overestimated, as
are their locations in k space.

In Fig. 4 we compare eigenstate expansion re-
sults with those obtained from diffusion simulation for
M(k,t)/M(t) at two nonzero values of p and at ¢ =
0.202. Figure 4(a) shows a weak relaxation (fast dif-
fusion, pa/Dy = 0.2) case, where the two methods evi-
dently yield very similar results. Figure 4(b) shows an in-
termediate relaxation strength case (pa/Dy = 1), where
somewhat greater differences appear between the two sets
of data, especially at the longest time for which results
are plotted.

One point worth noting in connection with Figs. 1-4 is
the fact that the two techniques yield essentially identical
results in the long wavelength limit k — 0 and also at

<
s 4T
E
-5
6T p=0.0 VN
| \ A\
7t @ « Diffusion Simulation \ o\ J
Ansatz \\}
8 . . . N W
0 1 2 3 4 5

Wave vector k along [100]

In[M(k,t)]

p=0.0
-5 F « Diffussion Simulation
—— Ansatz
| . . . .
0 1 2 3 4 5

Wave vector k along [100]

FIG. 3. Results for M(k,t)/M(t) at p = 0 based on the
ansatz (2.11), compared with results of the diffusion simula-
tion (a) for ¢ = 0.4674 and (b) for ¢ = 0.202.



3398

early times for all k. The quality of this agreement at
small k is not evident in these figures, due to insufficient
detail at small k, but it emerges quite convincingly when
one plots D(t)/Dg as calculated by the two methods.
This is shown in Fig. 5 for the two porosities ¢ = 0.4764
and 0.202 and for pa/Dg =0, 1.

Note that the results shown in Fig. 4 cover a more lim-
ited range of times than those shown in Fig. 1. We have
limited our attention to times for which the total mag-
netization M(t) has decayed to no less than 5% of its
original value. Typically, this is the range of experimen-
tal interest. For longer times, the simulations become
very time consuming because so few walkers survive that
it is difficult to achieve an acceptable level of statistical
accuracy. In addition, it should be noted that, even in
the p = 0 case, the simulations become less accurate at
long times and large k values. For example, in order
to faithfully describe the diffraction minima it is neces-
sary to compute some very small numbers with a high

s
&
=
=
¢ =0.202; pa/D,, = 0.20
-4 —— Eigenvalue Expansion .\,f
.
« Diffusion Simulation °
_5 l . L — 1 1
0 1 2 3 4 5
Wave vector k along [100]
=
2
)
=
6 =0.202; pa/D,=1.0 . \\
3 N1

—— Eigenvalue Expansion
| © Diffusion Simulation
L *
4 . S —— ~ J
0 1 2 3 4 5
Wave vector k along [100]

FIG. 4. Results for M(k,t)/M(t) based on the eigenstate
expansion and on diffusion simulations are compared for two
values of the relaxation strength p. In (a) pa/Do = 0.20
and t = 0.67 — 40 msec, while in (b) pa/D¢ = 1.0 and
t = 0.67 — 26.67 msec. In both sets of calculations ¢ = 0.202.
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degree of accuracy and this requires that a prohibitively
large number of walkers be simulated. For the totality
of these reasons, we have appropriately limited the time
ranges for which results are presented in Figs. 2-4. By
contrast, the eigenstate expansion can easily treat both
long times and large wave vectors; in fact, the longer the
time the more accurate the results. Clearly, in ordered
systems this technique is more dependable and less time
consuming than diffusion simulation, but over the range
of principal interest the two techniques yield similar re-
sults and with comparable quality. On the other hand,
random walker simulation is still the only method avail-
able for studying self-diffusion in a nondilute, disordered
system.

IV. THE RELATION BETWEEN v AND p

The continuum description of microstructure restricted
diffusion (i.e., diffusion in a porous medium) in the pres-

1.0 T
(@
o
0.8 .
i o
® e
R P T T T T T T YT Trvwverend
~ ©=0.476
= 06
Q ®
L]
YT TR TTTssssssesessees
=00 :
0.4 P ©=0.202
| —— Eigenvalue Expansion
i e Diffusion Simulation
I
0.2 ! : e
0.0 0.2 04, 0.6 0.8
[D,a’)"”
1.0
0.8 -
|
|
S
= 06+
Q
®%eceo
0.4 - palD,= 1.0 .-....'.0"..o0.....'.J
—— Eigenvalue Expansion ¢=0.202
e Diffusion Simulation
0.2 — . : et
0.0 0.2 04, 0.6 0.8
[Dytia’]

FIG. 5. Results for D(t)/Do based on the eigenstate expan-
sion and on diffusion simulations are compared for two values
of the relaxation strength p at the two porosities ¢ = 0.4764
and 0.202. In (a) p = 0, while in (b) pa/Do = 1.0.
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ence of interface absorption is unique and given by (2.1)—
(2.3). By contrast, there are many different ways of con-
structing a discrete random walker algorithm to approxi-
mate this process. A necessary requirement is that as the
size of the time step 7 and/or that of the spatial step €
tend to 0, the discrete algorithm should tend to the con-
tinuum description. The presence of interface absorption
introduces subtleties into this limit process which have
to do with the absorption being a surface phenomenon.
This is easiest to appreciate in the case of an algorithm
that differs from the one used in this work. In that al-
gorithm, the walker can only advance in space by steps
of +e along fized coordinate azes. This effectively dis-
cretizes space into a simple cubic lattice of available sites
with a unit cell edge e. When the walker reaches a sur-
face site and attempts to cross to the other side, it either
dies with probability v or stays put at the surface site
for one time step. The problem with this algorithm is
that it really approximates the true surface by a set of
right angled corners in those €3 cells which it intersects.
This is illustrated in Fig. 6(a), where the (curvilinear)
triangle ABC represents the intersection of the smooth
interface with such a lattice. The algorithm effectively
replaces that triangular section by the three right angled
(curvilinear) triangles a,b,c which lie in planes that are
perpendicular to the coordinate axes. The total area of
those three triangles is always greater than the area of
ABC and therefore the effective rate of surface absorp-
tion produced in the simulation is enhanced by a factor
equal to the ratio of areas (a + b + ¢)/ABC. If we let €
tend to 0, this ratio will tend to a constant that depends
on the local orientation of the interface with respect to

(a)

(x,¥,2)

Y a@) 1‘

(b)

FIG. 6. (a) Illustration of the surface area enhancement
that results from a discretization of space in a random walker
simulation. (b) Illustration of the configuration used to cal-
culate the probability for the random walker to die using the
random walker algorithm of Sec. IT A and the continuum dif-
fusion picture.
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the fixed coordinate axes and is usually greater than 1.
Its average value for a spherical surface can be found by
first considering the ratio

c

ABC

=|n-e,| =|cosb|, (4.1)
where n is a unit vector that is perpendicular to the
surface section ABC and e, is a unit vector along the z
axis. The average of this ratio over a spherical surface is
thus given by

<;1%C_> = %/dﬂtcosOl = %

Obviously, the other two ratios a/ABC and b/ABC have
the same average values and therefore

a+b+c\ 3

< ABC > T2

For a system of nonoverlapping spherical obstacles, one

could argue that this would be the correct value of the

proportionality factor A in (2.16), if one were using this
algorithm.

Since the algorithm used here is different, we at-
tempted to find the appropriate relation between - and
p by focusing upon the following question: What is the
average probability (Pg) for the walker to be dead at time
t = 7 if at time ¢ = 0 it was at any point that is within
a distance € from a flat surface?

That probability can easily be calculated from the ran-
dom walker algorithm by noting that the probability for
the walker to be dead at time 7 is nonzero only if at time
0 its distance z from the surface was less than e. If we
draw a sphere of radius € around the ¢ = 0 position of
the walker, then the intersection of that sphere with the
flat surface subtends a solid angle denoted by §2(z) [see
Fig. 6(b)], and the probability that the walker is dead at
time 7 is given by

(4.2)

(4.3)

Q(z) 1 z
= = — - —1]7. 4.4
Pa(z) 4 v 2 (1 e)’y (4.4)
The average probability that it is dead is therefore
1 [ ¥
(P = / dzPy(z) = 1. (4.5)
€ Jo 4

That probability can also be calculated from the con-
tinuum picture of diffusion by solving (2.1)—(2.3) and cal-
culating the integral

(P =1— %/0 dz/ dV'G(r,1', 7). (4.6)
z'>0

For a flat boundary, G is a product of three one-
dimensional propagators, two of which are free propa-
gators [i.e., one-dimensional versions of (2.6)] while the
third includes the effects of the boundary and can also
be calculated in closed form (in terms of error functions).
The integration finally leads to



3400

(Pa)

I

+o((%))

(4.7)

Ll [1 — i2erfc (\/§>
€ 2
pE

—— % 0.96
6Dy ’

Q

where i2erfc(z) is a twice iterated integral of erfc(z) [15]
and where we used the relation 6Do7 = €2 [see (2.15)].

Equating the two expressions for (P;) we immediately
get

3/2  _ pe

- re 4.8
0.96 '~ Dq (4.8)

i.e., A = 1.04 x 3/2. This is remarkably close to the value
A = 3/2 that we found for the previous algorithm. It is
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also quite close to the values that we found empirically
by fitting the decay rates for M (t)—see Table I.
Finally, we would like to point out that for both of the
algorithms which we considered in this section, the actual
local probability for the walker to die, as calculated by
solving the differential equation, is not a constant. In the
case of the first algorithm it depends on the local orienta-
tion of the interface. In the case of the second algorithm
it depends on the actual distance from the walker to the
nearest section of interface and should be calculated from
G(r,r',7). This observation suggests an alternative ap-
proach to the inclusion of surface absorption effects in
random walker simulations, in which the discrete prob-
ability of dying is assigned a value that depends upon
local conditions and reflects the details of the algorithm.
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FIG. 6. (a) Illustration of the surface area enhancement
that results from a discretization of space in a random walker
simulation. (b) Illustration of the configuration used to cal-
culate the probability for the random walker to die using the
random walker algorithm of Sec. II A and the continuum dif-
fusion picture.



